Legacy System Exorcism by Pareto’s Principle

Kristoffer Kvam
Telenor Nordic, IT, CRM
Snaroyaveien 30, 1331
Fornebu Oslo, Norway

ABSTRACT

Exorcism is mainly thought of as the rite of driving out the
Devil and his demons from possessed persons. This text is
about the same process except here the target is a legacy
software system. The target system was a major compo-
nent based system having been developed over 7 years by
30 to 60 people continuously under a classic plan driven ap-
proach. The Pareto Principle, or 80/20 rule as it is often
called, is used as the framework to prioritize activities in
a major reengineering initiative on the system from limited
resources. The initiative’s main focus was to increase the
developer productivity in the maintenance project in the
system by 25 percent. Typical agile practices were the in-
spiration for many of the changes implemented through the
project.

A measurement program is presented for validating suc-
cess, and the XRadar open source tool is used for measur-
ing the program. In one year, the productivity increase was
above 30 percent. There seems to be a high correlation
between productivity and the implementation of the agile
practices such as short iterations, daily standup-meetings
and pair programming as substitutes with the practice of a
formal QA regime. During the same period the error prone-
ness of the system decreased with several magnitudes and
our definition of the internal software quality increased by 22
percent. Hence, based on our measurements, the increased
productivity was not substituted by lower quality in the sys-
tem - on the contrary.

Keywords: Legacy System, Reengineering, Refactoring, Ag-
ile Development, Software Metrics, Open Source, Pareto
Principle

1. INTRODUCTION
1.1 The Principle

In 1906, Italian economist and sociologist, Vilfredo Pareto
created a mathematical formula to describe the uneven in-
come distribution in Switzerland at that time, observing
that eighty percent of the wealth was held by a mere twenty
percent of the families. Further empirical studies for other
time periods, for other countries, produced the stunning re-
sult that they all followed the same pattern. This was the
inspiration of the Pareto Principle - often called the 80/20

Copyright is held by the author/owner.
OOPSLA’05, October 16-20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

Rodin Lie
Telenor Nordic, IT, CRM
Snaroyaveien 30, 1331
Fornebu Oslo, Norway

kristoffer.kvam@telenor.com, rodin.lie@telenor.com

Daniel Bakkelund
Telenor Nordic, IT, CRM
Snaroyaveien 30, 1331
Fornebu Oslo, Norway

daniel.bakkelund@telenor.com

rule [5].

Since then this law has been applied in a wide variety
of domains to prioritize activities and model distributions.
The principle is used within areas such as business and man-
agement, economics, marketing, networking and software.
Some interesting examples of occurrences are:

e 80 percent of your deliveries comes from 20 percent of
your time [9].

e 80 percent of your profits come from 20 percent of your
customers [9].

e 80 percent of process defects arise from 20 percent of
the process issues [5].

1.2 The Principle Applied to Software Reengi-
neering

Mature software systems have a mysterious tendency to
produce highly unexpected errors and maintenance is a pain.
Taking inspiration from the Second Law of Thermodynam-
ics some call this phenomenon increasing system entropy: In
time a system experiences increasing disorder if not explic-
itly tended to [4]. This disorder adds accidental complex-
ity to the problem domain’s inherent complexity, something
many organisations experience as their systems mature.

This paper is an experience report of using the Pareto
Principle within the domain of software system reengineer-
ing and process transformation to agile practices. Specifi-
cally we show how we used the principle to prioritize what
to do in order to increase development productivity and the
quality of a large legacy system. A framework for measur-
ing key business performance indicators is used to evaluate
whether the approach was successful or not. We chose to
call the whole process Legacy System Exorcism.

We will first present the context that the exorcism was
conducted under. Then we will present the measurement
program that was build to validate success and prevent a
return to old sinns after the project was finished. Following
that the changes performed by the reengineering project will
be presented. We end will the quantifiable results and a
discussion on the project’s success.

2. THE CONTEXT
2.1 The System

Telenor is Norway’s largest telecommunications company
with numerous international interests.

COS is a middleware system, serving the mobile division
in Telenor, designed to give front-end applications a con-
sistent view across multiple back-end systems. There are
more than 20 front end applications serving retail outlets,
customer support, large corporate customers and internal
functions. The back end systems include Sybase and Ora-
cle databases, network connections and mainframes, all of
which are logically interconnected through the use of batch
jobs, scripts and database stored procedures. Some core
metrics of the system:

e 30 to 60 developers at any time.

e More than 40 client systems and 20 backend systems.

e 130K Non Commented Source Statements (NCSS). 1000K

generated NCSS.

e Exceeding 7 Million Transactions per day.

COS had evolved over five years into a large system, com-
posed of many subsystems. Development went though stages
with QA between each stage - a typical plan driven ap-
proach. Most developers supporting the system had above
5 years of programming experience and master level edu-
cation. There was also a high majority of motivated new
employees in the system with an interest in change. The
composition of employees and consultants varied through
the systems development, but on average there had been
an overweight of consultants doing development work in the
system.

After a five year period of sustained development and low
focus on maintenance, the problems were manifold [6]. The
Pareto project was instigated with solving the problems.

2.2 The Project

A project proposal that sounds like ”saving the system
from the entropy spiral” will likely face scepticism from man-
agement. The project’s business case must show that the
increased life of the system defends the investment. Our
approach to the business case was to focus on deliverables
that would reduce the cost of maintenance and implement-
ing changes in the system. The resulting project effect goals
that affected these were:

1. Increased productivity in the system’s maintenance or-
ganization by 25 percent.

2. Reduced error proneness in the system.

3. Measured internal system quality enhancement.

The productivity goal (1) was enough to support the busi-
ness case, and hence the most important external goal of the
project. Goal (2) and (3) was set for quality assurance of
the changes implemented. Focus on cost targets above typ-
ical revenue increasing targets, such as time-to-delivery and
increased system flexibility, was due to the internal mind-
set in the organisation at the time of the project. Further
details on the business case are company confidential, but
the break even time for the project investment was 2 years.
The project lasted for one year, and the success was to be
measured a half year after the project delivery.

3. MEASUREMENT PROGRAMME

The measurement programme was implemented as a part
of the Pareto project. The literature is rich on software
measurement, and we relied on established references when
building our own programme. We used the GQM (Goal-
Question-Metric) [1] paradigm for defining our measurements.
The inspiration for the measurement definitions and their
classification are based on [2] and references within. The
inspiration for developing a measurement breakdown under
internal quality were based on methods described in [10].

3.1 XRadar

The XRadar [11] was built to solve the metric monitoring-
needs of the system. The tool implements the internal qual-
ity measure as mentioned above as an easily configurable
metric for other systems. The tool is also under way to be
enhanced with the productivity and error proneness mea-
sures as well. A central design requirement for the XRadar
was that all stake holders should be offered their preferred
view of the system: managers, architects and developers.
Hence, you can navigate from abstract system representa-
tions through modules, packages, classes, source code and
documentation (javadoc) - everything integrated. Views
consist of graphs, tables and reports on all levels.

The XRadar offers two ways of viewing the system: statics
and dynamics. XRadar Statics reports on the current build
of the system. XRadar Dynamics includes the time dimen-
sion and presents historical trends with respect to different
metrics, and hence displays how the system has evolved over
time. This is important: imagine a stock analyst giving in-
vestment advice based only on the current stock prices with
no heed to the history of the stock? We believe investing in
software system is no different.

After the Pareto project the XRadar was made free and
open source under a BSD licence. The XRadar now has
an active user community that contributes to the tool in
several ways. The user community consists of both small
and large organisations. Several consulting firms also use
it for analysis of their client’s software as well as quality
control on their deliverables to their clients. See [11] and [7]
for further details such as report examples, tool use and the
architecture of the XRadar.

3.2 Development Productivity

Measuring development productivity is one of the most
controversial issues within the software metrics field. The
metrics have their strengths and weaknesses, but they all
have a common theme. The main idea is that productivity
is a measure of some unit of delivery per resource.

Classic units of delivery are lines of code and function
points, but we did not feel that either met our requirements
to relevance or ease of collection. All changes to the system
are done through change requests in the integrated source
control and configuration management system. Hence, we
chose the change request (CR) as the unit of delivery:

ChangeRequests

p P
roductivity Day % Resources

(1)

The division by resources was made because the number
of developers involved in maintenance changes a lot in the
organisation. There is no doubt that this measure has its
limitations, and need proof in order to be more valid. See

the Discussion section in the last part of the paper for details
on that.

3.3 System Error Proneness

When analysing defects, we had several views to consider,
but we chose the simplest and most critical measure to the
business. Specifically, we defined the error proneness as a
measure of critical defects corrected in production versions
of the system. The optimal value was naturally 0.

Critical De fects

ErrorProneness = ——————
Day * Resource

(2)

3.4 Internal Software Quality

Internal quality has been defined as the quality of ”at-
tributes of a software product that are dependent only on
the product itself” [2]. This definition is apposed to external
quality which is dependent on external factors such as the
users and the machine environment. The productivity and
error proneness measures as defined above are examples of
such external measures. Our internal quality measurement
was an aggregate measure of architecture quality, code qual-
ity and test quality. The final aggregate metric as well as
its sub-components are all of a value between 0 and 1. 0 is
the worst value, 1 is the best.

The final quality metric, Internal Quality (IQ), is imple-
mented as a configurable measure in the XRadar. The mea-
sure we set up was:

IQ=035xA+03xC+035+«T (3)

In the equation above, A is the architectural quality, C
is the code quality and T is the test quality. The calcu-
lation of these sub-components (all in the range from 0 to
1) are summed up in table 1. Notice how the IQ metric is
calculated by a hierarchy of sub-components.

The weights of the sub-components were set by system
experts based on three factors:

1. The expected cost of increasing (making better) a par-
ticular component.

2. The expected effect of the component on the error
proneness measure.

3. The expected effect of the component on the produc-
tivity measure.

A more scientific approach could have been to set the
coefficients by a regression analysis. That was not done.

4. PROJECT DELIVERIES

Based on the project effect goals, the project deliveries
were split into several areas. This section will describe each
area in turn: what it contains, how they were prioritized
using the Pareto principle and how they were believed to
affect the indicators. See [6] for even more discussion on the
architectural and code related deliveries.

4.1 Area: Architectural Quality
4.1.1 Problems

The system was known to be hard to maintain. Using the
XRadar for inspections, we identified the following malicious
symptoms with respect to architecture:

A lot of cyclic dependencies between modules.

e Code duplications, both of “simple copy-paste”’-type
and the more dangerous “duplicated business logic”-

type.

e Poor system-component orthogonality, causing changes
in one part of the system to result in unexpected be-
haviour in other places.

e Inadequate layering. A great deal of back-end system
detail was directly exposed in the system’s API.

4.1.2 Hypothesis

Inspired by the Pareto principle, we established the fol-
lowing hypotheses to use in the further prioritization and
selection of what to focus on.

1. 20 percent of the system functionality constitutes 80
percent of the system value.

2. 20 percent of the system architecture problems causes
80 percent of the observed system problems.

4.1.3 Delivery

After several rounds of discussion, everything from a rewrite
to minor fixes here and there where considered. However, a
rewrite would violate hypothesis number two since we would
spend a lot of effort fixing code that already worked. On the
other hand, we had to come up with something to tackle the
20 percent of the system causing most problems. In the end
we decided on a refactoring strategy, focusing on cyclic de-
pendencies and code duplications. The idea was that these
problems to a large degree were the cause of the other two.

The deliveries of the project with respect to architecture
ended up being:

e Defining a dependency graph for the system. A depen-
dency graph is a DAG describing the legal dependen-
cies between the different modules of the system. This
asset describes both which main modules the system is
meant to consist of as well as which system is allowed
to access which. This induces both vertical and hor-
izontal layers in the system. The actual compliance
to the defined dependency graph was to be monitored
using the XRadar both during the project and after-
wards.

e Improving the system’s compliance to the dependency
graph. A lot of the cyclic dependencies were caused by
business logic residing in too high tiers in the architec-
ture, forcing lower layer to either make calls to higher
layers or duplicate the required logic. The delivery
would be removal of cyclic dependencies and dupli-
cated business logic. This should in turn result in bet-
ter modularization. This would include moving around
misplaced business logic to remove cyclic dependencies
and duplication of business logic as well as refining the
modularization of the system.

e Build a set a frameworks that would help removing the
illegal dependencies.

Metric Level 1 | Metric Level 2

Formula

Architecture (A)

A=04xM+06%C

Modularization(L)

packages(illegaldependencies = true)/packages

Cohesion(C)

packages(cycles = true)[packages

Code (C)

C=0.15+*DOC+04+«DRY +03+« FRE+0.15% STY

Documentation(DOC) | javadocs/(methods + classes)

Dryness(DRY) classes(duplications = true)/classes
Freshness(FRE) classes(codeviolations = true)/classes
Stylishness(STY) classes(styleerrors = true)/classes

Test Suite (T)

Unit Test Code Coverage

Table 1: The subcomponents of the internal quality measure.

4.1.4 Expected Impact

The effects of this activity would directly affect the Archi-
tecture (A), Code (C) and Test Suite (T) parts of the inter-
nal quality definition. You would directly make changes to
code and architecture which would increase the architecture
metric, and refactor code while working on the modularisa-
tion. Tests would be written to secure success.

4.2 Area: Code Quality

4.2.1 Problems

Being guided by the XRadar and code read-throughs,
there was no difficulty seeing that a large part of the code
in the system was suffering from a lot of unnecessary com-
plexity and low readability. There were parts which were
producing worrisome measurements and were also heavily
maintained. Other parts did not seem bad at all. Inter-
views with maintainers were producing similar conclusions,
but they had all their favorite areas to complain about de-
pending on the domains they had worked within.

4.2.2 Hypothesis

The Pareto principles affecting our choices within the code
quality domain were:

1. 20 percent of the code is given 80 percent of the main-
tenance.

2. 20 percent of the maintained code produces 80 percent
of system defects.

4.2.3 Delivery

If these two hypothesizes about the system were true,
there was very little sense in refactoring large parts of the
code in order to increase productivity or the error proneness.
The investment would not pay off. Only a strict prioritiza-
tion would give a payoff.

In fact, the few things that was done to the code was di-
rectly linked to the deliveries mentioned under architecture
above. Little effort was put into refactoring code only due
to a lot of violations. On the other hand, several important
deliveries were done for the future:

e Remove and deprecate as much code as possible that
was not referenced or being used.

e Monitor code quality development and prioritize bad
candidates automatically with the XRadar.

4.2.4 Expected Impact

The effects of this activity were expected affect the Code
Quality (C) part of the internal quality definition.

4.3 Area: Test Quality
4.3.1 Delivery

Our decisions related to test, followed naturally from the
Pareto principles mentioned under the previous Code Qual-
ity section. There was no sense in developing a large test
suite on code that was not maintained. The deliveries fol-
lowed accordingly:

e Deliver an automatic unit test framework.

e Deliver an automatic regression (acceptance) test frame-
work.

e Use these frameworks to create tests for all code that
was changed on the project.

4.3.2 Expected Impact

These activities were necessary to be able to perform the
code changes in the project. You needed the frameworks
to avoid introduction of errors. It was also crucial if the
practice of test-driven development could be introduced (see
below for more on that).

4.4 Area: Culture and Process

4.4.1 Problems

For most actors in and outside the development organi-
zation, the system seemed like a large blob of code that
mysteriously worked. A few core developers had their own
special domains, without seeing the system as a whole. Lit-
tle communication happened between the developers. The
mood was excellent, and all were very dedicated to technol-
ogy, but little was done to share knowledge and discuss the
overall strategies for the future. Most architects were simply
senior programmers that had got the role, and their beliefs
were in many ways stuck in a past which were changing to
rapidly for them to follow.

Changes in the system were coordinated by a change man-
ager that assigned tasks to individual developers. There was
little communication between the client of the changes and
the developers, and requirements were sparse. The process
was plan driven and waterfall-inspired. There were 4 month
iterations ending with a production release and a strict pri-
oritization process between stake holders that were striving
to increase business value.

4.4.2 Hypothesis

The Pareto principles affecting our choices within the cul-
tural and process domain were:

1. 20 percent of the developers’ possess 80 percent of the
system knowledge.

2. 20 percent of the formal process elements cause 80 per-
cent process inefficiencies.

4.4.3 Delivery

Even though the technological changes done to the system
were expected to give fundamental gains, we believed that
true continuing success could only obtained by reshaping
the values of the organisation and letting those values be
reflected in the underlying process.

From the above hypothesizes, our conclusions were that
we should try to breed a culture and a supporting process
that excelled in knowledge sharing and communication with
all involved parts. Our belief was that we could gain great
strides in the productivity and quality focus of our organi-
zation by focusing at some limited areas. Specifically, we
needed a way get rid of the QA regime that was observed
to take a lot of time and effort, while not increasing error
proneness and the internal quality. The following changes
were made in the numbered order:

1. Introduce a new and modern configuration manage-
ment system that supported agile practices such as
refactoring and could map change control issues di-
rectly to the code.

2. Weekly, invite all the programmers to a half hour talk
about technical and cultural issues.

3. Introduce interviews for new consultants focusing on
a selection of elements from references such as [4] and

[3]-

4. Introduce test driven development into the develop-
ment process.

5. Replace or move central programmers and architects
promoting an unwanted culture.

6. Introduce the Scrum agile process [8] with techniques
such as using shorter delivery iterations, more commu-
nication with stake holders and daily stand-up meet-
ings.

7. Introduce pair programming into the development process

to replace the old QA regime.

8. Start a weekly meeting place (”Scrum of Scrums” [8])
where selected programmers involved the various project
teams exchange operative information.

An important factor is that all these changes were not
all instigated by the Pareto project. Only change 1-3 was
instigated by the project, and the other changes came later.
Most of the later ideas were discussed during the project,
and key project participants were driving forces when they
were instigated.

4.4.4 Expected Impact

The combined effects of these changes were believed to be-
come formidable. Changes such as test driven development,
pair programming and weekly development forums were be-
lieved to increase the internal system quality measure in all
its dimensions a great deal. That again was believed to in-
crease productivity and reduce error proneness. The changes
to the process such as the new configuration management
system, Scrum and increased communication in the organi-
zation was mainly believed to give impact on productivity
through developer focus and value chain understanding.

S. RESULTS

The results based on the success factor metrics are pre-
sented in table 2. Since the configuration management sys-
tem was introduced during the project, the productivity and
error proneness values are only present one year back in
time.

The success criteria for the project were to be measured
between release 11 (base line) and 15.1. As the table above
shows, the increases in the key project goals were the fol-
lowing:

e Increase in productivity by more than 30 percent. The
first measure (15) was 51 percent above the base line,
while the second measure is 32 percent above the base
line.

e Decrease in error proneness by several orders of mag-
nitude.

e Increase in internal quality by 22 percent.

The graphs of productivity and error proneness can be
found in figure 1 , while the internal quality can be found in
figure 2.

6. DISCUSSION

Below, we discuss the various success goals of the Pareto
project and how well they correlated with our hypothesizes.

6.1 Productivity

Assuming that the productivity measurement is correct,
the initial data shows that the two and only real changes
that definitely had a positive effect was the introduction of
the Scrum process and the replacement of the formal QA
process by pair programming. Exactly to what degree each
had on the measure is difficult to say, but probably it comes
from a combination of the two.

For providing more evidence on the productivity increase,
we see that 2 indicators correlate well with the result:

1. Before and after the increase in the measure, our analy-
sis has shown us that the mean size of CRs are the
in terms of classes involved had the same mean (2.4
classes).

2. Before and after the increase in the measure, the tasks
started were all based on the same paradigm of setting
initial estimates. Before the change, the organisation

Release | Date Productivity | Error Internal | Significant
Proneness | Quality | Event
7.2 01.05.2002 | NA NA 0.28
8.1 01.11.2002 | NA NA 0.29
9.3 01.06.2003 | NA NA 0.29
10 01.09.2003 | NA NA 0.31 Pareto project instigated
Unit test framework introduced
11 01.11.2003 | NA NA 0.33 Configuration management system introduced
interview program for new consultants started
12 01.02.2004 | 8.41 % 102 2.02%107°% | 0.41
13 25.05.2004 | 7.00 * 10~ 6.00 %10~ | 0.46 Weekly knowledge sharing meeting started
Pareto project ends
14 15.09.2004 | 8.24 %1072 0.00 0.47 Test driven development required
15 17.11.2004 | 12.8 x 1072 1.22 %1077 | 0.48 Scrum introduced
Pair programming introduced
15.1 29.01.2005 | 11.1 %1077 0.00 0.50 Scrum of Scrums introduced
Major stability case of the servers drains the
organisation of resources
Table 2: Changes of the metrics in the system through the releases.
Productivity Error Proneness
0.14
0.007
0.12
0.006
0.1
0.005
0.08
0.004
0.06
0.003
0.04
0.002
00z 0.001
: 0 [
F:f- '\ﬁr- A(;): MO?' J:g- k04 A;g- ng_ C:)c: Ng:- D:f J;g_ Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Oct- Nov- Dec- Jan-
04 04 04 04 04 04 04 04 04 04 04 05

Figure 1: The productivity and error proneness.

0.6

0.5

0.4

0.3

0.2

0.1

0

e S P

Internal Quality

g & e"

0.6

— - ¢& - = Test Quality
-+ -0 - - Architectural Quality
—an— Code Quality

05 | — W
— oo g
...... Deeoe e g ¢
04 oo, Qe QB oem
.,‘
03 &
'/
02 7/
’/
0.1 s
.
0 .

VI ISP LSS I F IS S

Figure 2: The internal quality measure and its components.
half year back in time. This is apposed to the productivity and error proneness which only goes back 1 year.

& & BS S &S SS
& N f o AP IR GIENIPEC RO AN
\&* °@Qe ¥ \@\&* Vgt o o @ Y F &

3
\y*)° ¢ N PRI AR N EARRCIRCY

Note that the graphs goes more than 2 and a

had a delivery accuracy to these estimates of -20 per-
cent. After the change the delivery accuracy to these
estimates was +30 percent. This correlates well with
a 50 percent increase in productivity.

Still, this is not enough as a proof of the measure. If
we had conducted a survey of system stake holders (such
as management, clients, developers) before and after the
measure was done, and saw a similar trend, we would have
been more comfortable.

6.2 Error Proneness

Error proneness fell a lot after the project, and can likely
to be attributed to the sum of all the activities that were
done. Still, we can easily identify a caveat here. As the re-
sults show, the error proneness increased dramatically shortly
after the project. Those errors are likely due the reengineer-
ing project changes.

6.3 Internal Quality

First of all, there is no indication of there being correlation
between our internal quality measure and the productivity
measure. This correlation was one of the major hypothe-
sizes of the project, and seems to be invalid. There is more
proof that there is a correlation between this measure and
decreased error proneness. Still, the validity of this measure
is uncertain. There is a need for more data to be certain.

6.4 Project Success Validation

Based on the above there are two ways of looking project
success. If we look at the project in retrospect, there is little
proof showing that the changes done by the project actually
produced the shift in productivity. As discussed, there are
indications that the project reduced error proneness, but it
is not conclusive.

If we, on the other hand, look at this project as knowledge
and maturity creation process in the organisation, it was a
definite success. After all, the defined success criteria were
met within the project validation time and more than that.
We believe that introducing test driven development, Scrum
and pair programming would not have been possible with-
out the changes made to the system as well as the cultural
initiative that were started.

If we had done the project again, there is always the ques-
tion of what should have been done different. The biggest
mistake made was forgetting to early analyse quantitatively
how different change alternatives evaluated by the project
would impact the core success criteria. If we had done that,
we could have benefited much more from prioritization based
on cost/benefit.

7. CONCLUSION

This text has presented our experience in a major reengi-
neering initiative on a legacy application. The results indi-
cate that the work done, combined with initiatives started
after the project based on its created momentum, made the
project a success. A formidable increase in productivity re-
sulted from the initiative, and the quality of the system was
increased along some major dimensions, but on far from all.
The belief was that there is an alternative to a total system
rewrite, and based on our measurement program we were
right.

The paper leaves as many questions as it answers. There
is a definite need for further correlation studies and regres-
sion analyses of the data based on the COS system as well
as other internal and external systems. In addition, an in-
teresting study could be on how other external attributes of
the system were affected by the changes made. Such could
be measures of availability, responsiveness and system sup-
portability. We are also in the process of conducting an
experiment with one of our academic partners, Simula, on
the results from the pair programming, and believe that will
give further indications of the results obtained.

Entropy is a never ending force pushing our system and
its development organization out of balance. New exorcists
must be educated to continually initiate countermeasures
agianst this entropy demon. At least now we are not left
blindfolded when analysing the system and evaluating activ-
ities. We now have the advantage, thanks to the XRadar,
system testability, system flexibility and not to forget the
solid communication channels that are in place. In the end,
our exorcists now have the ability to give the systems its
death sentence. A pragmatic evaluation by the Pareto Prin-
ciple might one day recommend a complete rewrite. After
all, no systems live forever.

8. REFERENCES

[1] Basili et. al. A methodology for collecting valid
software engineering data. IEEE Tanssactions on
Software Engineering, 10(6):728-38, 1984.

[2] Fenton Norman E. et. al. Software Metrics: A
Rigorous and Practical Approach, Revised Edition.
Metrics and Models in Software Qulality Engineering,
1998.

[3] Fowler Martin et. al. Refactoring: Improving the
Design of Existing Code. 1999.

[4] Hunt A. et. al. Pragmatic Programmer, from
Journeyman to Master. 2000.

[5] Juran J.M. et. al. Juran’s Quality Control Handbook,
4th Edition. 1998.

[6] Kvam Kristoffer et. al. Cynical reengineering. XP2004
Procedings, 2004.

[7] Kvam Kristoffer et. al. A tool for cynical
reengineering. rOOts 2004 Procedings, 2004.

[8] Schwaber et. al. Scrum. 2000.

[9] Koch. The 80/20 Principle: The Secret to Success by
Achieving More with Less. 1999.

[10] Gilb Tom. Principles of Software Engineering
Management. 1999.
[11] XRadar. http://xradar.sourceforge.net/.

